在存儲器最前面放置好向量表-->把通用寄存器清零-->開中斷-->跳轉(zhuǎn)到start函數(shù)繼續(xù)執(zhí)行初始化。在start函數(shù)中,順次執(zhí)行三個函數(shù):禁用看門狗-->初始化C語言環(huán)境(向量表重定向、拷貝數(shù)據(jù)段到RAM、清零bss段等)-->系統(tǒng)外設初始化。 ③系統(tǒng)外設初始化函數(shù) sysinit()
首先寫SIM_SCGC5寄存器。SCGC5表示的是System Clock Gating Control Register 5(系統(tǒng)時鐘門控制寄存器5).系統(tǒng)集成模塊 --System integration module (SIM)--控制寄存器組中共有8個SCGC寄存器,它們分別控制不同外設所需要的時鐘的開關(guān),SCGC5寄存器控制的是PORTA~PORTE、TSI、REGFILE和LPTIMER時鐘的開關(guān),向?qū)奈粚懭?表示使能時鐘。第一段代碼分別打開了PORTA~PORTE的時鐘開關(guān)。
上面pll_init(unsigned char,unsigned char)函數(shù)用來增加系統(tǒng)時鐘。
- unsigned char pll_init(unsigned char clk_option, unsigned char crystal_val)
-
{
-
unsigned char pll_freq;
-
-
if (clk_option > 3) {return 0;} //return 0 if one of the available options is not selected
-
if (crystal_val > 15) {return 1;} // return 1 if one of the available crystal options is not available
-
//This assumes that the MCG is in default FEI mode out of reset.
-
-
// First move to FBE mode
-
#if (defined(K60_CLK) || defined(ASB817))
-
MCG_C2 = 0;
-
#else
-
// Enable external oscillator, RANGE=2, HGO=1, EREFS=1, LP=0, IRCS=0
-
MCG_C2 = MCG_C2_RANGE(2) | MCG_C2_HGO_MASK | MCG_C2_EREFS_MASK;
-
#endif
-
-
// after initialization of oscillator release latched state of oscillator and GPIO
-
SIM_SCGC4 |= SIM_SCGC4_LLWU_MASK;
-
LLWU_CS |= LLWU_CS_ACKISO_MASK;
-
-
// Select external oscilator and Reference Divider and clear IREFS to start ext osc
-
// CLKS=2, FRDIV=3, IREFS=0, IRCLKEN=0, IREFSTEN=0
-
MCG_C1 = MCG_C1_CLKS(2) | MCG_C1_FRDIV(3);
-
-
/* if we aren't using an osc input we don't need to wait for the osc to init */
-
#if (!defined(K60_CLK) && !defined(ASB817))
-
while (!(MCG_S & MCG_S_OSCINIT_MASK)){}; // wait for oscillator to initialize
-
#endif
-
-
while (MCG_S & MCG_S_IREFST_MASK){}; // wait for Reference clock Status bit to clear
-
-
while (((MCG_S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x2){}; // Wait for clock status bits to show clock source is ext ref clk
-
-
// Now in FBE
-
-
#if (defined(K60_CLK))
-
MCG_C5 = MCG_C5_PRDIV(0x18);
-
#else
-
// Configure PLL Ref Divider, PLLCLKEN=0, PLLSTEN=0, PRDIV=5
-
// The crystal frequency is used to select the PRDIV value. Only even frequency crystals are supported
-
// that will produce a 2MHz reference clock to the PLL.
-
MCG_C5 = MCG_C5_PRDIV(crystal_val); // Set PLL ref divider to match the crystal used
-
#endif
-
-
// Ensure MCG_C6 is at the reset default of 0. LOLIE disabled, PLL disabled, clk monitor disabled, PLL VCO divider is clear
-
MCG_C6 = 0x0;
-
// Select the PLL VCO divider and system clock dividers depending on clocking option
-
switch (clk_option) {
-
case 0:
-
// Set system options dividers
-
//MCG=PLL, core = MCG, bus = MCG, FlexBus = MCG, Flash clock= MCG/2
-
set_sys_dividers(0,0,0,1);
-
// Set the VCO divider and enable the PLL for 50MHz, LOLIE=0, PLLS=1, CME=0, VDIV=1
-
MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV(1); //VDIV = 1 (x25)
-
pll_freq = 50;
-
break;
-
case 1:
-
// Set system options dividers
-
//MCG=PLL, core = MCG, bus = MCG/2, FlexBus = MCG/2, Flash clock= MCG/4
-
set_sys_dividers(0,1,1,3);
-
// Set the VCO divider and enable the PLL for 100MHz, LOLIE=0, PLLS=1, CME=0, VDIV=26
-
MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV(26); //VDIV = 26 (x50)
-
pll_freq = 100;
-
break;
-
case 2:
-
// Set system options dividers
-
//MCG=PLL, core = MCG, bus = MCG/2, FlexBus = MCG/2, Flash clock= MCG/4
-
set_sys_dividers(0,1,1,3);
-
// Set the VCO divider and enable the PLL for 96MHz, LOLIE=0, PLLS=1, CME=0, VDIV=24
-
MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV(24); //VDIV = 24 (x48)
-
pll_freq = 96;
-
break;
-
case 3:
-
// Set system options dividers
-
//MCG=PLL, core = MCG, bus = MCG, FlexBus = MCG, Flash clock= MCG/2
-
set_sys_dividers(0,0,0,1);
-
// Set the VCO divider and enable the PLL for 48MHz, LOLIE=0, PLLS=1, CME=0, VDIV=0
-
MCG_C6 = MCG_C6_PLLS_MASK; //VDIV = 0 (x24)
-
pll_freq = 48;
-
break;
-
}
-
while (!(MCG_S & MCG_S_PLLST_MASK)){}; // wait for PLL status bit to set
-
-
while (!(MCG_S & MCG_S_LOCK_MASK)){}; // Wait for LOCK bit to set
-
-
// Now running PBE Mode
-
-
// Transition into PEE by setting CLKS to 0
-
// CLKS=0, FRDIV=3, IREFS=0, IRCLKEN=0, IREFSTEN=0
-
MCG_C1 &= ~MCG_C1_CLKS_MASK;
-
-
// Wait for clock status bits to update
-
while (((MCG_S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x3){};
-
-
// Now running PEE Mode
-
-
return pll_freq;
-
} //pll_init
這個函數(shù)中兩個參數(shù)clk_option和crystal_val是兩個枚舉變量(enum),從它們的定義來看它們的取值范圍是0~3和0~15.所以函數(shù)開始先進行有效性判斷。
MCG表示的是 Multipurpose Clock Generator(多用途時鐘發(fā)生器).MCG模塊向MCU提供幾個時鐘源選擇。這個模塊包含了一個 frequency-locked loop (FLL)和一個 phase-locked loop (PLL).FLL可以通過內(nèi)部的或外部的參考時鐘源來控制,PLL可以通過外部參考時鐘來控制。模塊可以選擇FLL或PLL的輸出時鐘或者內(nèi)部或外部時鐘源作為MCU的系統(tǒng)時鐘。上面MCG_2指的是 MCG Control 2 Register. MCG一共有9種操作模式:FEI, FEE, FBI, FBE, PBE, PEE, BLPI,BLPE,and Stop. 不同運行模式的功耗互不相同,要進入各個模式需要寫MCG_1~MCG_6寄存器組中某幾個寄存器中的某幾個位。 我們可以這樣說,采用內(nèi)部組件的模式所消耗的功率少于采用外部組件的模式。而MCG包括兩種專門為低功率應用設計的模式——旁通低功耗內(nèi)部(BLPI)和旁通低功耗外部(BLPE)。驅(qū)動BLPI模式的總線頻率要比BLPE 模式低,因此BLPI 模式消耗的功率最小。下圖2總結(jié)了每一種運行模式的功耗。
在sysinit()函數(shù)中對pll_init(unsigned char,unsigned char)函數(shù)的引用包含兩個參數(shù):CORE_CLK_MHZ和REF_CLK,從其定義可以看出其值分別為PLL96和XTAL8,分別代表2和3.K60_CLK 被定義為1.因此,在引用pll_init(unsigned char,unsigned char)函數(shù)時根據(jù)條件編譯,執(zhí)行的語句依次是: